Recently MXenes has gained immense attention as a new and exciting class of two-dimensional material. Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for various applications such as energy, environmental, and biomedical. The ease of dispersibility and metallic conductivity of MXene render them promising candidates for use as fillers in polymer nanocomposites. MXene–polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. However, the potentiality of MXene to modify the electrospun nanofibers has been less studied. Understanding the interactions between polymeric nanofibers and MXenes is important to widen their role in biomedical applications. This review explores diverse methods of MXene synthesis, discusses our current knowledge of the various biological characteristics of MXene, and the synthesis of MXene incorporated polymeric nanofibers and their utilization in biomedical applications. The information discussed in this review serves to guide the future development and application of MXene–polymer nanofibers in biomedical fields.