Accurate species identification, especially in the fishery sector, is critical for ensuring food safety, consumer protection and to prevent economic losses. In this study, a total of 93 individual frozen–thawed cuttlefish samples from four different species (S. officinalis, S. bertheloti, S. aculeata, and Sepiella inermis) were collected from two wholesale fish plants in Chioggia, Italy. Species identification was carried out by inspection through morphological features using dichotomic keys and then through near-infrared spectroscopy (NIRS) measurements. The NIRS data were collected using a handled-portable spectrophotometer, and the spectral range scanned was from 900–1680 nm. The collected spectra were processed using principal component analysis for unsupervised analysis and a support vector machine for supervised analysis to evaluate the species identification capability. The results showed that NIRS classification had a high overall accuracy of 93% in identifying the cuttlefish species. This finding highlights the robustness and effectiveness of spectral analysis as a tool for species identification, even in complex spatial contexts. The findings emphasize the potential of NIRS as a valuable tool in the field of fishery product authentication, offering a rapid and eco-friendly approach to species identification in the post-processing stages.