We investigate the effect of intra-molecular cross-links on the properties of polymer bulks. To do this, we apply a combination of thermal, rheological, diffraction, and neutron spin echo experiments covering the inter-molecular as well as the intermediate length scales to melts of single-chain nano-particles (SCNPs) obtained through ‘click’ chemistry. The comparison with the results obtained in a bulk of the corresponding linear precursor chains (prior to intra-molecular reaction) and in a bulk of SCNPs obtained through azide photodecomposition process shows that internal cross-links do not influence the average inter-molecular distances in the melt, but have a profound impact at intermediate length scales. This manifests in the structure, through the emergence of heterogeneities at nanometric scale, and also in the dynamics, leading to a more complex relaxation behavior including processes that allow relaxation of the internal domains. The influence of the nature of the internal bonds is reflected in the structural relaxation that is slowed down if bulky cross-linking agents are used. We also found that any residual amount of cross-links is critical for the rheological behavior, which can vary from an almost entanglement-free polymer bulk to a gel. The presence of such inter-molecular cross-links additionally hinders the decay of density fluctuations at intermediate length scales.