2023
DOI: 10.3390/sym15071384
|View full text |Cite
|
Sign up to set email alerts
|

Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions

Abstract: In this paper, we perform a further investigation on the Apostol–Bernoulli and Apostol–Euler functions introduced by Luo. By using the Fourier expansions of the Apostol–Bernoulli and Apostol–Euler polynomials, we establish some symmetric identities for the Apostol–Bernoulli and Apostol–Euler functions. As applications, some known results, for example, Raabe’s multiplication formula and Hermite’s identity, are deduced as special cases.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?