Temporal networks, i.e., networks in which the interactions among a set of
elementary units change over time, can be modelled in terms of time-varying
graphs, which are time-ordered sequences of graphs over a set of nodes. In such
graphs, the concepts of node adjacency and reachability crucially depend on the
exact temporal ordering of the links. Consequently, all the concepts and
metrics proposed and used for the characterisation of static complex networks
have to be redefined or appropriately extended to time-varying graphs, in order
to take into account the effects of time ordering on causality. In this chapter
we discuss how to represent temporal networks and we review the definitions of
walks, paths, connectedness and connected components valid for graphs in which
the links fluctuate over time. We then focus on temporal node-node distance,
and we discuss how to characterise link persistence and the temporal
small-world behaviour in this class of networks. Finally, we discuss the
extension of classic centrality measures, including closeness, betweenness and
spectral centrality, to the case of time-varying graphs, and we review the work
on temporal motifs analysis and the definition of modularity for temporal
graphs.Comment: 26 pages, 5 figures, Chapter in Temporal Networks (Petter Holme and
Jari Saram\"aki editors). Springer. Berlin, Heidelberg 201