Heterocyclic chalcones have been prominent in the scientific community due to various biological activities reported for these compounds. The structural knowledge of heterocyclic chalcones can help in the understanding of their mechanism of action. The Hirshfeld surfaces were used to study the supramolecular arrangement of two conformers present into asymmetric unit of the heterocyclic chalcone (2E)-3-(4-methylphenyl)-1-(pyridin-3-yl)-prop-2-en-1-one on crystalline state. In addition, the linear polarizability (α), the first hyperpolarizability (β||z), and the second hyperpolarizability (γ) of the conformers were calculated to get a better insight on the linear and nonlinear optical behaviors of these structures in presence of solvent medium, as well as their band-gap energies. The Hirshfeld surfaces confirmed the presence of C−H···N, C−H···O and C−H···C interactions in packaging stabilization. Finally, the 2D fingeprint plot was used to the quantification of contacts and indicated that there are both π···π and C−H···π interactions present in the compound.