Several methods have been proposed recently to estimate the edge infection probabilities in infection or diffusion models. In this paper we will use the framework of the Generalized Cascade Model to define the Inverse Infection Problem-the problem of calculating these probabilities. We are going to show that the problem can be reduced to an optimization task and we will give a particle swarm based method as a solution. We will show, that direct estimation of the separate edge infection values is possible, although only on small graphs with a few thousand edges. To reduce the dimensionality of the task, the edge infection values can be considered as functions of known attributes on the vertices or edges of the graph, this way only the unknown coefficients of these functions have to be estimated. We are going to evaluate our method on artificially created infection scenarios. Our main points of interest are the accuracy and stability of the estimation.