A characterization of the Cu K 1,2 spectrum is presented, including the 2p satellite line, K 3,4 , the details of which are robust enough to be transferable to other experiments. This is a step in the renewed attempts to resolve inconsistencies in characteristic X-ray spectra between theory, experiment and alternative experimental geometries. The spectrum was measured using a rotating anode, monolithic Si channel-cut double-crystal monochromator and backgammon detector. Three alternative approaches fitted five Voigt profiles to the data: a residual analysis approach; a peak-by-peak fit; and a simultaneous constrained method. The robustness of the fit is displayed across three spectra obtained with different instrumental broadening. Spectra were not well fitted by transfer of any of three prior characterizations from the literature. Integrated intensities, line widths and centroids are compared with previous empirical fits. The novel experimental setup provides insight into the portability of spectral characterizations of X-ray spectra. From the parameterization, an estimated 3d shake probability of 18% and a 2p shake probability of 0.5% are reported.