“…Reformulating the last equation as G n (a, c, e) = G n (q 4 a, q 4 c, q 4 e) (qe; q) 4 (1 â q 6 ce 2 /a 2 )(1 â q 6 e 3 /ac) (q 3 e 2 /a; q) 4 (1 â q 4 c) ( and then iterating this relation m-times, we get the following expression G n (a, c, e) = G n (q 4m a, q 4m c, q 4m e) (qe; q) 4m (q 3 e 2 /a; q) 4m q 6 ce 2 /a 2 , q 6 {1 â q 6+8k e 3 /a} (qe; q) 4k (q 6 e 2 /a; q) 4k q 6 ce 2 /a 2 , q 6 e 3 /ac q 4 c, q 4 ae/c |q 4 k q 4k (11) and then reformulating the R-function by singling out k-factorials R(q 4k a, q 4k c, q 4k e) = 1 â q 6+4n+8k e 3 /a 1 â q 6+8k e 3 /a a 2 /q 2 e 2 q 4+4k c, q 4+4k ae/c |q 4 n Ă (q 1+4k e; q) 3n [a/qe, a/q 2 e, a/q 3 e; q 2 ] n a/c, c/e q 6+4k e 2 /a |q n = 1 â q 6+4n+8k e 3 /a 1 â q 6+8k e 3 /a q 6 e 2 /a, q 1+3n e q 6+n e 2 /a, qe |q 4k q 4 c, q 4 ae/c q 4+4n c, q 4+4n ae/c |q 4 k Ă (qe; q) 3n [a/qe, a/q 2 e, a/q 3 e; q 2 ] n a/c, c/e q 6 e 2 /a |q n a 2 /q 2 e 2 q 4 c, q 4 ae/c |q 4 n , we establish another transformation formula.…”