Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As the demand for bandwidth in wireless communication increases, carrier frequencies will reach the terahertz (THz) regime. One of the common preconceived notions is that, at these high frequencies, signals can radiate with high directivity which inherently provides more secure channels. Here, we describe the first study of the vulnerability of these directional links to jamming, in which we identify several features that are distinct from the usual considerations of jamming at low frequencies. We show that the receiver’s use of an envelope detector provides the jammer with the ability to thwart active attempts to adapt to their attack. In addition, a jammer can exploit the broadband nature of typical receivers to implement a beat jamming attack, which allows them to optimize the efficacy of the interference even if their broadcast is detuned from the frequency of the intended link. Our work quantifies the increasing susceptibility of broadband receivers to jamming, revealing previously unidentified vulnerabilities which must be considered in the development of future wireless systems operating above 100 GHz.
As the demand for bandwidth in wireless communication increases, carrier frequencies will reach the terahertz (THz) regime. One of the common preconceived notions is that, at these high frequencies, signals can radiate with high directivity which inherently provides more secure channels. Here, we describe the first study of the vulnerability of these directional links to jamming, in which we identify several features that are distinct from the usual considerations of jamming at low frequencies. We show that the receiver’s use of an envelope detector provides the jammer with the ability to thwart active attempts to adapt to their attack. In addition, a jammer can exploit the broadband nature of typical receivers to implement a beat jamming attack, which allows them to optimize the efficacy of the interference even if their broadcast is detuned from the frequency of the intended link. Our work quantifies the increasing susceptibility of broadband receivers to jamming, revealing previously unidentified vulnerabilities which must be considered in the development of future wireless systems operating above 100 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.