SUMMARYThis paper considers the problem of an inÿnite, isotropic elastic plane containing an arbitrary number of non-overlapping circular holes and isotropic elastic inclusions. The holes and inclusions are of arbitrary size and the elastic properties of all of the inclusions can, if desired, be di erent. The analysis is based on the two-dimensional version of Somigliana's formula, which gives the displacements at a point inside a region V in terms of integrals of the tractions and displacements over the boundary S of this region. We take V to be the inÿnite plane, and S to be an arbitrary number of circular holes within this plane. Any (or all) of the holes can contain an elastic inclusion, and we assume for simplicity that all inclusions are perfectly bonded to the material matrix. The displacements and tractions on each circular boundary are represented as truncated Fourier series, and all of the integrals involved in Somigliana's formula are evaluated analytically. An iterative solution algorithm is used to solve the resulting system of linear algebraic equations. Several examples are given to demonstrate the accuracy and e ciency of the numerical method.