Building a widely distributed hotspot network is a very tedious task due to its complexity. Providing security, fully distributed network services, and a cost-conscious impact are the major challenges behind this goal. To overcome these issues, we have presented a novel distributed hotspot network architecture with five layers that can provide large-scale hotspot coverage as an assimilated result. Our contributions to this new architecture highlight important aspects. First, scalability can be increased by including many Internet of Things (IoT) devices with sensors and Wi-Fi and/or LoraWAN connectivity modules. Second, hotspot owners can rent out their hotspots to create a distributed hotspot network in which the hotspots can act as an ordinary data gateway, a full-fledged hotspot miner, and a light-weight hotspot miner to earn crypto tokens as rewards for certain activities. Third, the advantages of Wi-Fi and LoraWAN can be seamlessly leveraged to achieve optimal coverage, higher network security, and suitable data transmission rate for transferring sensor data from IoT devices to remote application servers and users. Fourth, blockchain is used to enhance the decentralized behavior of the architecture that is presented here by providing immutability and independence from a centralized regulator and making the network architecture more reliable and transparent. The main feature of our paper is the use of the dew-computing paradigm along with hotspots to improve availability, Internet backhaul-agnostic network coverage, and synchronous update capability, and dew-aware leasing to strengthen and improve coverage. We also discuss the key challenges and future roadmap that require further investment and deployment.