Applying Biogeography-Based Multi-Layer Perceptron Neural Network to Predict California Bearing Capacity Value of Stabilized Pond Ash With Lime and Lime Sludge
Abstract:In this study, a hybrid biogeography-based multi-layer perceptron neural network (BBO-MLP) with different number of hidden layers (one up to three) was developed for predicting the California bearing capacity (CBR) value of pond ash stabilized with lime and lime sludge. To this aim, model had five variables named maximum dry density, optimum moisture content, lime percentage, lime sludge percentage and curing period as inputs, and CBR as output variable. Regarding BBO-MLP models, BBO-MLP1 has the best results,… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.