Combinatorial testing has been suggested as an effective method of creating test cases at a lower cost. However, industrially applicable tools for modeling and combinatorial test generation are still scarce. As a direct effect, combinatorial testing has only seen a limited uptake in industry that calls into question its practical usefulness. This lack of evidence is especially troublesome if we consider the use of combinatorial test generation for industrial safety-critical control software, such as are found in trains, airplanes, and power plants.To study the industrial application of combinatorial testing, we evaluated ACTS, a popular tool for combinatorial modeling and test generation, in terms of applicability and test efficiency on industrial-sized IEC 61131-3 industrial control software running on Programmable Logic Controllers (PLC). We assessed ACTS in terms of its direct applicability in combinatorial modeling of IEC 61131-3 industrial software and the efficiency of ACTS in terms of generation time and test suite size. We used 17 industrial control programs provided by Bombardier Transportation Sweden AB and used in a train control management system. Our results show that not all combinations of algorithms and interaction strengths could generate a test suite within a realistic cut-off time. The results of the modeling process and the efficiency evaluation of ACTS are useful for practitioners considering to use combinatorial testing for industrial control software as well as for researchers trying to improve the use of such combinatorial testing techniques.