Applying Machine Learning for Enhanced MicroRNA Analysis: A Companion Risk Tool for Oral Squamous Cell Carcinoma in Standard Care Incisional Biopsy
Neha Pruthi,
Tami Yap,
Caroline Moore
et al.
Abstract:Machine learning analyses within the realm of oral cancer outcomes are relatively underexplored compared to other cancer types. This study aimed to assess the performance of machine learning algorithms in identifying oral cancer patients, utilizing microRNA expression data. In this study, we implemented this approach using a panel of oral cancer-associated microRNAs sourced from standard incisional biopsy specimens to identify cases of oral squamous cell carcinomas (OSCC). For the model development process, we… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.