2023
DOI: 10.1587/nolta.14.403
|View full text |Cite
|
Sign up to set email alerts
|

Applying reinforcement learning algorithms to ground station selection in satellite-terrestrial optical communication

Abstract: Non-terrestrial networks, composed of ground, air, and satellite communications, are considered one of the key components for the Beyond 5G/6G, and optical satellite communication is a fundamental technology to enable high-capacity communications. It is affected by interruptions of optical communications due to clouds on the communication link. A satellite can mitigate the interruption by switching its destination ground station to the other communication available station, though it brings additional delays i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 18 publications
0
0
0
Order By: Relevance