2024
DOI: 10.1109/access.2024.3368070
|View full text |Cite
|
Sign up to set email alerts
|

Applying the Deep Learning Techniques to Solve Classification Tasks Using Gene Expression Data

Sergii Babichev,
Igor Liakh,
Irina Kalinina

Abstract: This manuscript explores the application of deep learning (DL) techniques for classifying gene expression data. A key aspect of our research is the comparative analysis of various DL neural network architectures, including Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) Recurrent Neural Networks (RNN), as well as hybrid models that combine these networks. We applied the Bayesian optimization algorithm using 5-fold cross-validation for optimal hyperparameter tunin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 29 publications
0
0
0
Order By: Relevance