The strapdown inertial navigation system (SINS) can be installed on a shearer and used for monitoring its position. However, under the complex environment of the mechanized mining face, the strong vibration of the shearer may cause large calculation error. First, the dynamic model of a doubledrum shearer is built with a force analysis, and the spectrum characteristics of linear vibration and angular vibration for the fuselage are then obtained. Second, the coning error and sculling error compensation models of SINS for the shearer are derived based on vibration characteristics. Meanwhile, according to the factor of the uncompensated model, multi-sample compensation model, and different coal and rock traits and different vibration frequencies of the fuselage, the shearer SINS error compensation property under multiple parameters is researched and analyzed in simulation. Finally, simulations indicate that the SINS error compensation model with the three-sample algorithm and four-sample algorithm can improve the calculating accuracy of the shearer SINS. The coning and sculling errors can be compensated effectively by the shearer error compensation model under many vibration conditions, such as different coal and rock traits and different frequencies of the fuselage.INDEX TERMS Strapdown inertial navigation system (SINS), error compensation, accuracy analysis, dynamic model of shearer, vibration characteristic.