2023
DOI: 10.1002/jum.16332
|View full text |Cite
|
Sign up to set email alerts
|

Approaches and Limitations of Machine Learning for Synthetic Ultrasound Generation

Mauro Mendez,
Shruthi Sundararaman,
Linda Probyn
et al.

Abstract: This scoping review examines the emerging field of synthetic ultrasound generation using machine learning (ML) models in radiology. Nineteen studies were analyzed, revealing three primary methodological strategies: unconditional generation, conditional generation, and domain translation. Synthetic ultrasound is mainly used to augment training datasets and as training material for radiologists. Blind expert assessment and Fréchet Inception Distance are common evaluation methods. Current limitations include the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 37 publications
0
0
0
Order By: Relevance