Exposure to excessive concentrations of fluoride in potable water is harmful to human health; therefore, its limitation is deemed necessary. Among the commonly applied technologies, adsorption is selected, as it is a highly effective, simple, and economically efficient treatment. In the present study, several combinations of chitosan (CS), orange peels (OP), activated carbon (AC), and MgO were synthesized and tested as adsorbents in order to find the most effective derivative for fluoride extraction. The impact of the adsorbent dosage, pH level, contact time, and initial concentration was investigated to assess the feasibility of the chitosan/orange peels/activated carbon@MgO composite. According to the results, the modification of chitosan with AC, OP, and MgO in a unique adsorbent (CS/OP/AC@MgO), especially in acidic conditions (pH 3.0 ± 0.1) by using 1.0 g/L of the adsorbent, demonstrated the highest efficiency in F removal, up to 97%. The pseudo-second (PSO) order model and Langmuir isotherm model fit better to the experimental results, especially for CS/OP/AC@MgO, providing a Qm = 26.92 mg/g. Thermodynamic analysis confirmed the spontaneous nature of the adsorption process. The structure and morphology of the modified OP/CS@AC-Mg were extensively characterized using BET, XRD, FTIR, and SEM techniques.