In this paper, we propose a novel approach to formalize the impact of malicious intergroup informational attacks toward a group of unmanned aerial vehicles communication. Infrequent but critical situations arise when an already authorized group member starts to transmit false data to other group participants. These scenarios can be caused by a software or hardware malfunction or a malicious attack, and cannot be prevented by the conventional security measures. The impact of such actions can be critical for a group’s performance. To address this issue, we develop and formalize the model of unmanned aerial vehicles’ intergroup communication and provide the calculus for a group’s performance destructive impact. We employ a multi-agent-based approach to formalize the information interaction between the participants of the unmanned aerial vehicles group. The model we propose possesses such properties as symmetry and scalability, as it considers individual participants as separate homogeneous distributed agents that have to perform their tasks in parallel to achieve the joint group goal. We classify informational threats by the type of the destructive impact they cause: apparent and hidden. Data contained in informational messages is categorized according to the agent’s destructive impact premeditation degree: intentional and unintentional. To verify the model proposed, we conduct an empirical study. The results show that the false data transmitted during the intergroup communication adversely affects the group’s performance, and such an impact can be measured and quantified.