Exposure to environmental chemicals is now well recognized as a significant factor contributing to the global burden of disease; however, there remain critical gaps in understanding the types of biological mechanisms that link environmental chemicals to adverse health outcomes. One type of mechanism that remains understudied involves extracellular vesicles (EVs), representing small cell-derived particles capable of carrying molecular signals such as RNAs, miRNAs, proteins, lipids, and chemicals through biological fluids and imparting beneficial, neutral, or negative effects on target cells. In fact, evidence is just now starting to grow that supports the role of EVs in various disease etiologies. This review aims to (1) Provide a landscape of the current understanding of the functional relationship between EVs and environmental chemicals; (2) Summarize current knowledge of EV regulatory processes including production, packaging, and release; and (3) Conduct a database-driven analysis of known chemical-gene interactions to predict and prioritize environmentally relevant chemicals that may impact EV regulatory genes and thus EV regulatory processes. This approach to predicting environmentally relevant chemicals that may alter EVs provides a novel method for evidence-based hypothesis generation for future studies evaluating the link between environmental exposures and EVs.