2019
DOI: 10.1088/1742-6596/1196/1/012044
|View full text |Cite
|
Sign up to set email alerts
|

Appropriate CNN Architecture and Optimizer for Vehicle Type Classification System on the Toll Road

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 2 publications
0
3
0
1
Order By: Relevance
“…Each optimizer is evaluated with three different CNN architectures such as LeNet, shallow network, and MiniVGGNet. The outcome illustrates that Adadelta optimizer is considered to be best for the Mini VGGNet architecture due to high accuracy optimizers [21].…”
Section: Literature Reviewmentioning
confidence: 98%
“…Each optimizer is evaluated with three different CNN architectures such as LeNet, shallow network, and MiniVGGNet. The outcome illustrates that Adadelta optimizer is considered to be best for the Mini VGGNet architecture due to high accuracy optimizers [21].…”
Section: Literature Reviewmentioning
confidence: 98%
“…Penelitian sebelumnya sudah melakukan percobaan dengan menggunakan metode CNN dan hasil yang diperoleh dari jaringan memiliki evaluasi yang akurat yaitu 73%. Percobaan tersebut menggunakan arsitektur MiniVGGNet yang menerapkan fungsi optimasi adadelta dan parameter citra 64x64 dan epoch 40 [5]. Existing CNN yang akan digunakan dalam penelitian ini antara lain adalah Alexnet dan Mobilenet V2 yang telah berhasil mengklasifikasikan objek dengan baik.…”
Section: Pendahuluanunclassified
“…RMSProp was introduced to address the problem of the monotonically decreasing learning rate [23]. The weights are updated based on Equation (17),…”
Section: Rmsprop Optimizermentioning
confidence: 99%
“…For this architecture, RMSProp achieved the best accuracy. Swastika et al [ 17 ] evaluated three optimizers to classify vehicle types: Adam, Adadelta, and SGD. The authors used three CNN architectures to evaluate each optimizer: a shallow network, LeNet, and MiniVGGNet.…”
Section: Related Workmentioning
confidence: 99%