2018
DOI: 10.3390/e20080622
|View full text |Cite
|
Sign up to set email alerts
|

Approximate Bayesian Computation for Estimating Parameters of Data-Consistent Forbush Decrease Model

Abstract: Realistic modeling of complex physical phenomena is always quite a challenging task. The main problem usually concerns the uncertainties surrounding model input parameters, especially when not all information about a modeled phenomenon is known. In such cases, Approximate Bayesian Computation (ABC) methodology may be helpful. The ABC is based on a comparison of the model output data with the experimental data, to estimate the best set of input parameters of the particular model. In this paper, we present a fra… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
3
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 31 publications
0
3
0
2
Order By: Relevance
“…The ABC method was introduced, and first widely applied, in population genetics [20][21][22], and was subsequently implemented in a wide range of other scientific areas [23][24][25][26][27][28] (detailed reviews are provided by Csilléry et al [29], Marin et al [30], Lintusaari et al [31], Sisson et al [32], and Beaumont [33]). More recently, ABC has been employed in engineering contexts for the estimation of rate coefficients in chemical kinetic models [34], for the estimation of boundary conditions in complex thermal-fluid flows [35], and for determining unknown model parameters in autonomic [36] and nonlinear [37] subgrid-scale closure models for LES.…”
Section: Approximate Bayesian Computation With Markov Chain Monte Car...mentioning
confidence: 99%
“…The ABC method was introduced, and first widely applied, in population genetics [20][21][22], and was subsequently implemented in a wide range of other scientific areas [23][24][25][26][27][28] (detailed reviews are provided by Csilléry et al [29], Marin et al [30], Lintusaari et al [31], Sisson et al [32], and Beaumont [33]). More recently, ABC has been employed in engineering contexts for the estimation of rate coefficients in chemical kinetic models [34], for the estimation of boundary conditions in complex thermal-fluid flows [35], and for determining unknown model parameters in autonomic [36] and nonlinear [37] subgrid-scale closure models for LES.…”
Section: Approximate Bayesian Computation With Markov Chain Monte Car...mentioning
confidence: 99%
“…Однако дальнейшие разработки [11] показали, что алгоритм не является достаточно эффективным и может давать недостоверный результат -применение алгоритма за 3 года не позволило идентифицировать более 50 % солнечных протонных событий. Другими учеными [12] предлагается применение методологии приближенных байесовских вычислений для оценки параметров модели Форбуш-понижения интенсивности галактических космических лучей. Но данный подход не получил четкой формализации ввиду отсутствия длинных рядов данных, охватывающих длительность Форбуш-понижения, а также отсутствия данных нескольких детекторов с различимой жесткостью откликов [12].…”
Section: Introductionunclassified
“…Другими учеными [12] предлагается применение методологии приближенных байесовских вычислений для оценки параметров модели Форбуш-понижения интенсивности галактических космических лучей. Но данный подход не получил четкой формализации ввиду отсутствия длинных рядов данных, охватывающих длительность Форбуш-понижения, а также отсутствия данных нескольких детекторов с различимой жесткостью откликов [12].…”
Section: Introductionunclassified
“…The ABC method was introduced and first widely applied in population genetics [20][21][22] and molecular genetics [23]. It has subsequently been used in other scientific areas such as astrophysics [24,25], chemistry [26], epidemiology [27,28] and ecology [29]. More detailed recent reviews of the ABC approach are provided by Csilléry et al [30], Marin et al [31], Lintusaari et al [32], Sisson et al [33] and, most recently, Beaumont [34].…”
Section: Introductionmentioning
confidence: 99%