Noise is ubiquitous in the real-world environment. At present, most scholars only include the stage of Gaussian white noise when applying noise in neural networks and regard white noise as a tool to optimize the network model, which is far from enough, because noise not only affects the optimization ability of the Hopfield neural network but can also better fit the needs of the actual use of the scene. Therefore, according to the problems in the existing research, a method is proposed to combine the neural network with colored noise according to the signal-to-noise ratio. Taking blue noise as an example, the anti-interference ability of the Hopfield neural network regarding colored noise is studied. The results show that for the Hopfield neural network driven by blue noise, by adjusting the neural network step size, excitation function and signal-to-noise ratio, it not only provides ideas for adding colored noise to the neural network but also enables the neural network model to have better optimization-seeking ability. The research results have some reference significance for improving the practical application of neural networks in noisy environments.