Probability reigns in biology, with random molecular events dictating the fate of individual organisms, and propelling populations of species through evolution. In principle, the master probability equation provides the most complete model of probabilistic behavior in biomolecular networks. In practice, master equations describing complex reaction networks have remained unsolved for over 70 years. This practical challenge is a reason why master equations, for all their potential, have not inspired biological discovery. Herein, we present a closure scheme that solves the master probability equation of networks of chemical or biochemical reactions. We cast the master equation in terms of ordinary differential equations that describe the time evolution of probability distribution moments. We postulate that a finite number of moments capture all of the necessary information, and compute the probability distribution and higherorder moments by maximizing the information entropy of the system. An accurate order closure is selected, and the dynamic evolution of molecular populations is simulated. Comparison with kinetic Monte Carlo simulations, which merely sample the probability distribution, demonstrates this closure scheme is accurate for several small reaction networks. The importance of this result notwithstanding, a most striking finding is that the steady state of stochastic reaction networks can now be readily computed in a single-step calculation, without the need to simulate the evolution of the probability distribution in time.stochastic models | information theory | entropy maximization | statistical mechanics T he fabric of all things living is discrete and noisy, individual molecules in perpetual random motion. However, humans, in our effort to understand and manipulate the biological cosmos, have historically perceived and modeled nature as large collections of molecules with behaviors not far from an expected average. Mathematical models, founded on such determinism, may be excellent approximations of reality when the number of molecules is very large, approaching the limit of an infinitely sized molecular population (1-5). Of course, the size of biomolecular systems is far from infinite. And we know that the behavior of a few molecules fluctuating from the average in unexpected ways may forever seal the fate of a living organism. It has thus been commonly recognized that models of small, evolving molecular populations better account for the noisy, probabilistic nature of outcomes (6-8).The most complete model of stochastically evolving molecular populations is one based on the master probability equation (9). The "master" in the name reflects the all-encompassing nature of an equation that purports to govern all possible outcomes for all time. Because of its ambitious character, the master equation has remained unsolved for all but the simplest of molecular interaction networks, even though it is now over seven decades since the first master equations were set up for chemical systems (10,11). Herein we ...