The laboratory methods used for the soil water retention curve (SWRC) construction and parameter estimation is time-consuming. A vertical infiltration method was proposed to estimate parameters α and n and to further construct the SWRC. In the present study, the relationships describing the cumulative infiltration and infiltration rate with the depth of the wetting front were established, and simplified expressions for estimating α and n parameters were proposed. The one-dimensional vertical infiltration experiments of four soils were conducted to verify if the proposed method would accurately estimate α and n. The fitted values of α and n, obtained from the RETC software, were consistent with the calculated values obtained from the infiltration method. The comparison between the measured SWRCs obtained from the centrifuge method and the calculated SWRCs that were based on the infiltration method displayed small values of root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error. SWMS_2D-based simulations of cumulative infiltration, based on the calculated α and n, remained consistent with the measured values due to small RMSE and MAPE values. The experiments verified the proposed one-dimensional vertical infiltration method, which has applications in field hydraulic parameter estimation.