This article is the first of two in which we develop a relaxation finite volume scheme for the convective part of the multiphase flow models introduced in the series of papers [17,16,6]. In the present article we focus on barotropic flows where in each phase the pressure is a given function of the density. The case of general equations of state will be the purpose of the second article. We show how it is possible to extend the relaxation scheme designed in [12] for the barotropic Baer-Nunziato two phase flow model to the multiphase flow model with N -where N is arbitrarily large -phases. The obtained scheme inherits the main properties of the relaxation scheme designed for the Baer-Nunziato two phase flow model. It applies to general barotropic equations of state. It is able to cope with arbitrarily small values of the statistical phase fractions. The approximated phase fractions and phase densities are proven to remain positive and a fully discrete energy inequality is also proven under a classical CFL condition. For N = 3, the relaxation scheme is compared with Rusanov's scheme, which is the only numerical scheme presently available for the three phase flow model (see [6]). For the same level of refinement, the relaxation scheme is shown to be much more accurate than Rusanov's scheme, and for a given level of approximation error, the relaxation scheme is shown to perform much better in terms of computational cost than Rusanov's scheme. Moreover, contrary to Rusanov's scheme which develops strong oscillations when approximating vanishing phase solutions, the numerical results show that the relaxation scheme remains stable in such regimes.