2023
DOI: 10.1002/pamm.202300246
|View full text |Cite
|
Sign up to set email alerts
|

Approximate time optimal control by deep neural networks trained with numerically obtained optimal trajectories

Christian Zauner,
Hubert Gattringer,
Andreas Müller

Abstract: This paper focuses on online time optimal control of nonlinear systems. This is achieved by approximating the results of time optimal control problems (TOCP) with deep neural networks (DNN) depending on the initial and terminal system state. In general, solving a TOCP for nonlinear systems is a computationally challenging task. Especially in the context of time optimal nonlinear model predictive control (TMPC) with hard real time constraints successful termination of a TOCP within sample times suitable for con… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?