Approximate time optimal control by deep neural networks trained with numerically obtained optimal trajectories
Christian Zauner,
Hubert Gattringer,
Andreas Müller
Abstract:This paper focuses on online time optimal control of nonlinear systems. This is achieved by approximating the results of time optimal control problems (TOCP) with deep neural networks (DNN) depending on the initial and terminal system state. In general, solving a TOCP for nonlinear systems is a computationally challenging task. Especially in the context of time optimal nonlinear model predictive control (TMPC) with hard real time constraints successful termination of a TOCP within sample times suitable for con… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.