For the problem of nonparametric regression of smooth functions, we reconsider and analyze a constrained variational approach, which we call the MultIscale Nemirovski-Dantzig (MIND) estimator. This can be viewed as a multiscale extension of the Dantzig selector (Ann. Statist., 35(6): 2313-51, 2009) based on early ideas of Nemirovski (J. Comput. System Sci., 23:1-11, 1986). MIND minimizes a homogeneous Sobolev norm under the constraint that the multiresolution norm of the residual is bounded by a universal threshold. The main contribution of this paper is the derivation of convergence rates of MIND with respect to L q -loss, 1 ≤ q ≤ ∞, both almost surely and in expectation. To this end, we introduce the method of approximate source conditions. For a onedimensional signal, these can be translated into approximation properties of B-splines. A remarkable consequence is that MIND attains almost minimax optimal rates simultaneously for a large range of Sobolev and Besov classes, which provides certain adaptation. Complimentary to the asymptotic analysis, we examine the finite sample performance of MIND by numerical simulations.