2024
DOI: 10.3390/fractalfract8020091
|View full text |Cite
|
Sign up to set email alerts
|

Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN

Yahong Wang,
Wenmin Wang,
Cheng Yu
et al.

Abstract: The purpose of this paper is to leverage the advantages of physics-informed neural network (PINN) and convolutional neural network (CNN) by using Legendre multiwavelets (LMWs) as basis functions to approximate partial differential equations (PDEs). We call this method Physics-Informed Legendre Multiwavelets CNN (PiLMWs-CNN), which can continuously approximate a grid-based state representation that can be handled by a CNN. PiLMWs-CNN enable us to train our models using only physics-informed loss functions witho… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 52 publications
0
0
0
Order By: Relevance