2022
DOI: 10.3390/math10101683
|View full text |Cite
|
Sign up to set email alerts
|

Approximation Hierarchies for the Copositive Tensor Cone and Their Application to the Polynomial Optimization over the Simplex

Abstract: In this paper, we discuss the cone of copositive tensors and its approximation. We describe some basic properties of copositive tensors and positive semidefinite tensors. Specifically, we show that a non-positive tensor (or Z-tensor) is copositive if and only if it is positive semidefinite. We also describe cone hierarchies that approximate the copositive cone. These hierarchies are based on the sum of squares conditions and the non-negativity of polynomial coefficients. We provide a compact representation for… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 39 publications
0
0
0
Order By: Relevance