2022
DOI: 10.48550/arxiv.2201.04827
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Approximation of a degenerate semilinear PDEs with a nonlinear Neumann boundary condition

Abstract: We consider a system of semilinear partial differential equations (PDEs) with a nonlinearity depending on both the solution and its gradient. The Neumann boundary condition depends on the solution in a nonlinear manner. The uniform ellipticity is not required to the diffusion coefficient. We show that this problem admits a viscosity solution which can be approximated by a penalization. The Lipschitz condition is required to the coefficients of the diffusion part. The nonlinear part as well as the Neumann condi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?