Abstract:We consider a system of semilinear partial differential equations (PDEs) with a nonlinearity depending on both the solution and its gradient. The Neumann boundary condition depends on the solution in a nonlinear manner. The uniform ellipticity is not required to the diffusion coefficient. We show that this problem admits a viscosity solution which can be approximated by a penalization. The Lipschitz condition is required to the coefficients of the diffusion part. The nonlinear part as well as the Neumann condi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.