Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The work is devoted to the investigation of problem of approximation of continuous periodic functions by trigonometric polynomials, which are generated by linear methods of summation of Fourier series. The simplest example of a linear approximation of periodic functions is the approximation of functions by partial sums of their Fourier series. However, the sequences of partial Fourier sums are not uniformly convergent over the class of continuous periodic functions. Therefore, a many studies is devoted to the research of the approximative properties of approximation methods, which are generated by transformations of the partial sums of Fourier series and allow us to construct sequences of trigonometrical polynomials that would be uniformly convergent for the whole class of continuous functions. Particularly, Fejer means have been widely studied in the last time. One of the important problems in this field is the study of asymptotic behavior of the upper bounds over a fixed classes of functions of deviations of the trigonometric polynomials. The aim of the work systematizes known results related to the approximation of classes of Poisson integrals of continuous functions by arithmetic means of Fourier sums, and presents new facts obtained for particular cases. The asymptotic behavior of the upper bounds on classes of Poisson integrals of periodic functions of the real variable of deviations of linear means of Fourier series, which are defined by applying the Fejer summation method is studied. The mentioned classes consist of analytic functions of a real variable, which are narrowing of bounded harmonic in unit disc functions of complex variable. In the work, asymptotic equalities for the upper bounds of deviations of Fejer means on classes of Poisson integrals were obtained.
The work is devoted to the investigation of problem of approximation of continuous periodic functions by trigonometric polynomials, which are generated by linear methods of summation of Fourier series. The simplest example of a linear approximation of periodic functions is the approximation of functions by partial sums of their Fourier series. However, the sequences of partial Fourier sums are not uniformly convergent over the class of continuous periodic functions. Therefore, a many studies is devoted to the research of the approximative properties of approximation methods, which are generated by transformations of the partial sums of Fourier series and allow us to construct sequences of trigonometrical polynomials that would be uniformly convergent for the whole class of continuous functions. Particularly, Fejer means have been widely studied in the last time. One of the important problems in this field is the study of asymptotic behavior of the upper bounds over a fixed classes of functions of deviations of the trigonometric polynomials. The aim of the work systematizes known results related to the approximation of classes of Poisson integrals of continuous functions by arithmetic means of Fourier sums, and presents new facts obtained for particular cases. The asymptotic behavior of the upper bounds on classes of Poisson integrals of periodic functions of the real variable of deviations of linear means of Fourier series, which are defined by applying the Fejer summation method is studied. The mentioned classes consist of analytic functions of a real variable, which are narrowing of bounded harmonic in unit disc functions of complex variable. In the work, asymptotic equalities for the upper bounds of deviations of Fejer means on classes of Poisson integrals were obtained.
The paper is devoted to the approximation by arithmetic means of Fourier sums of classes of periodic functions of high smoothness. The simplest example of a linear approximation of continuous periodic functions of a real variable is the approximation by partial sums of the Fourier series. The sequences of partial Fourier sums are not uniformly convergent over the class of continuous periodic functions. A significant number of works is devoted to the study of other approximation methods, which are generated by transformations of Fourier sums and allow us to construct trigonometrical polynomials that would be uniformly convergent for each continuous function. Over the past decades, Fejer sums and de la Vallee Poussin sums have been widely studied. One of the most important direction in this field is the study of the asymptotic behavior of upper bounds of deviations of linear means of Fourier sums on different classes of periodic functions. Methods of investigation of integral representations of deviations of trigonometric polynomials generated by linear methods of summation of Fourier series, were originated and developed in the works of S.M. Nikolsky, S.B. Stechkin, N.P. Korneichuk, V.K. Dzadyk and others. The aim of the work systematizes known results related to the approximation of classes of Poisson integrals by arithmetic means of Fourier sums, and presents new facts obtained for particular cases. In the paper is studied the approximative properties of repeated Fejer sums on the classes of periodic analytic functions of real variable. Under certain conditions, we obtained asymptotic formulas for upper bounds of deviations of repeated Fejer sums on classes of Poisson integrals. The obtained formulas provide a solution of the corresponding Kolmogorov-Nikolsky problem without any additional conditions.
The work is devoted to the investigation of problem of approximation of continuous periodic functions of a real variable by trigonometric polynomials generated by linear methods of summation of Fourier series. The simplest example of the process of linear approximation of periodic functions is approximation of functions by partial sums of their Fourier series. However, sequences of partial Fourier sums are not uniformly convergent on the whole class of continuous periodic functions. Therefore, numerous studies are devoted to the study of approximation properties of approximating methods, which are generated by different transformations of sequences of partial sums of the Fourier series and allow obtaining sequences of trigonometric polynomials that are uniformly convergent for the entire class of continuous functions. In particular, Fejér means have been intensively studied in recent decades. One of the important tasks in this direction is study of the asymptotic behavior of the upper bounds of the deviations of trigonometric polynomials for a fixed class of periodic functions. The aim of the work is to systematize the known results concerning the approximation of classes of periodic functions of high smoothness by arithmetic means of Fourier sums, and to present new facts obtained for a more general case. In paper we investigate the asymptotic behavior of upper bounds on classes of Poisson integrals of periodic functions of real variable of deviations of linear means of Fourier series, which are constructed using the Fejér summation method. We study the classes consist of analytic functions of a real variable, which can be regularly extended into the corresponding strip of the complex plane. In the work, asymptotic inequalities for the upper bounds of the deviations of the Fejér means on the class of Poisson integrals were found. In certain case of parameters defining the class, the obtained formulas coincide with previously known asymptotic equalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.