Microphones integrated on a seat belt are an interesting alternative to conventional sensor positions used for handsfree telephony or speech dialog systems in automobile environments. In the setup presented in this contribution, the seat belt consists of three microphones which usually lay around the shoulder and chest of a sitting passenger. The main benefit of belt microphones is the small distance from the talker's mouth to the sensor. As a consequence, an improved signal quality in terms of a better signal-to-noise ratio (SNR) compared to other sensor positions, e.g., at the rear view mirror, the steering wheel, or the center console, can be achieved. However, the belt microphone arrangement varies considerably due to movements of the passenger and depends on the size of the passenger. Furthermore, additional noise sources arise for seat belt microphones: they can easily be touched, e.g., by clothes, or might be in the path of an air-stream from the automotive ventilation system. This contribution presents several robust signal enhancement algorithms designed for belt microphones in multi-seat scenarios. The belt microphone with the highest SNR (usually closest to the speaker's mouth) is selected for speech signal enhancement. Further improvements can be achieved if all belt microphone signals are combined to a single output signal. The proposed signal enhancement system for belt microphones includes a robust echo cancelation scheme, three different microphone combining approaches, a sophisticated noise estimation scheme to track stationary as well as non-stationary noise, and a speech mixer to combine the signals from each seat belt to a single channel output in a multi-seat scenario.