2020
DOI: 10.28991/cej-2020-03091506
|View full text |Cite
|
Sign up to set email alerts
|

Approximation of the Multidimensional Optimal Control Problem for the Heat Equation (Applicable to Computational Fluid Dynamics (CFD))

Abstract: This work is devoted to finding an estimate of the convergence rate of an algorithm for numerically solving the optimal control problem for the three-dimensional heat equation. An important aspect of the work is not only the establishment of convergence of solutions of a sequence of discrete problems to the solution of the original differential problem, but the determination of the order of convergence, which plays a very important role in applications. The paper uses the discretization method of the different… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
9
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 24 publications
(9 citation statements)
references
References 7 publications
0
9
0
Order By: Relevance
“…The results of the excision theorem of the dihedral cohomology equipped with the results of Intissar (2020) and Kostikov and Romanenkov (2020). Also, our results can introduce this application in a new form.…”
Section: Public Interest Statementmentioning
confidence: 69%
See 1 more Smart Citation
“…The results of the excision theorem of the dihedral cohomology equipped with the results of Intissar (2020) and Kostikov and Romanenkov (2020). Also, our results can introduce this application in a new form.…”
Section: Public Interest Statementmentioning
confidence: 69%
“…We can apply this theorem in the operator algebra in the next work and apply this result in our life working as by Intissar (2020) to improve results. Our result can be equipped with the result by Kostikov and Romanenkov (2020) and can improve it by using our result.…”
Section: Resultsmentioning
confidence: 91%
“…Zhang et al [13] studied a gas engine-driven heat pump (GEHP) performance experimentally for space heating and cooling and investigated the effect of critical parameters on system performance under both cooling and heating modes. Kostikov and Romanenkov [14] performed an estimating the convergence rate of an algorithm for numerically solving the optimal control problem for the three-dimensional heat equation. A variety of longitudinal and peripheral fins are used to increase the heat transfer of free convection.…”
Section: Introductionmentioning
confidence: 99%
“…Research on stochastic differential equations with delay has received attention over the last few decades because of their appropriateness to describe physical systems subject to delays, such as the ones found in biology, medicine, epidemiology, chemistry, physics, and economics (see Helge et al, 2010;Intissar., 2020;Kostikov & Romanenkov, 2020;Mao, 2007;Trung, 2020 for a brief overview). The qualitative and quantitative properties of solutions of stochastic differential equations with delay, such as the existence, uniqueness, controllability, and stability, have been considered by several authors (see Bouzahir et al, 2017;Dieye et al, 2017;Diop et al, 2014;Taniguchi et al, 2002;Zouine et al, 2020).…”
Section: Introductionmentioning
confidence: 99%