2023
DOI: 10.1515/dma-2023-0035
|View full text |Cite
|
Sign up to set email alerts
|

Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues

Vladimir G. Ryabov

Abstract: The nonlinearity of vectorial functions and of their restrictions to manifolds are defined as the Hamming distance to the set of affine mappings and of their restrictions to the manifold, respectively. Relations between the parameters of the nonlinearity of a vectorial function and their analogues for its coordinate functions and its restrictions to manifolds are established. An analogue of the Parseval identity for such parameters of vectorial functions is proved, which implies the upper bound (qk … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?