Abstract:In this paper we study the theory of the so-called Kantorovich max-product neural network operators in the setting of Orlicz spaces L ϕ . The results here proved, extend those given by the authors in Result Math., 2016, to a more general context. The main advantage in studying neural network type operators in Orlicz spaces relies in the possibility to approximate not necessarily continuous functions (data) belonging to different function spaces by a unique general approach. Further, in order to derive quantita… Show more
In the present paper we establish a quantitative estimate for the sampling Kantorovich operators with respect to the modulus of continuity in Orlicz spaces defined in terms of the modular functional. At the end of the paper, concrete examples are discussed, both for what concerns the kernels of the above operators, as well as for some concrete instances of Orlicz spaces.
In the present paper we establish a quantitative estimate for the sampling Kantorovich operators with respect to the modulus of continuity in Orlicz spaces defined in terms of the modular functional. At the end of the paper, concrete examples are discussed, both for what concerns the kernels of the above operators, as well as for some concrete instances of Orlicz spaces.
“…This represents a wide field of investigations, due to its practical applications in various sectors of applied sciences (see e.g. [1,2,[20][21][22][23][24][25] and references therein).…”
In this paper we introduce the exponential sampling Durrmeyer series. We discuss pointwise and uniform convergence properties and an asymptotic formula of Voronovskaja type. Quantitative results are given, using the usual modulus of continuity for uniformly continuous functions. Some examples are also described.
“…We recall that, with the name "Kantorovich", we also usually refer to some integral-type extension of classical inequalities, classical pointwise operators, and other mathematical tools-see, e.g., [14][15][16][17].…”
In the paper, we give some new improvements of the Kantorovich type inequalities by using Popoviciu’s, Hölder’s, Bellman’s and Minkowski’s inequalities. These results in special case yield Hao’s, reverse Cauchy’s and Minkowski’s inequalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.