This paper aims to present a Clenshaw–Curtis–Filon quadrature to approximate thesolution of various cases of Cauchy-type singular integral equations (CSIEs) of the second kind witha highly oscillatory kernel function. We adduce that the zero case oscillation (k = 0) proposed methodgives more accurate results than the scheme introduced in Dezhbord at el. (2016) and Eshkuvatovat el. (2009) for small values of N. Finally, this paper illustrates some error analyses and numericalresults for CSIEs.