This article is a study on the (k,s)-Riemann–Liouville fractional integral, a generalization of the Riemann–Liouville fractional integral. Firstly, we introduce several properties of the extended integral of continuous functions. Furthermore, we make the estimation of the Box dimension of the graph of continuous functions after the extended integral. It is shown that the upper Box dimension of the (k,s)-Riemann–Liouville fractional integral for any continuous functions is no more than the upper Box dimension of the functions on the unit interval I=[0,1], which indicates that the upper Box dimension of the integrand f(x) will not be increased by the σ-order (k,s)-Riemann–Liouville fractional integral ksD−σf(x) where σ>0 on I. Additionally, we prove that the fractal dimension of ksD−σf(x) of one-dimensional continuous functions f(x) is still one.