Target detection has occupied a pivotal position in distributed system. Scan statistics, as one of the most efficient detection methods, has been applied to a variety of anomaly detection problems and significantly improves the probability of detection. However, scan statistics cannot achieve the expected performance when the noise intensity is strong, or the signal emitted by the target is weak. The local vote algorithm can also achieve higher target detection rate. After the local vote, the counting rule is always adopted for decision fusion. The counting rule does not use the information about the contiguity of sensors but takes all sensors' data into consideration, which makes the result undesirable. In this paper, we propose a scan statistics with local vote (SSLV) method. This method combines scan statistics with local vote decision. Before scan statistics, each sensor executes local vote decision according to the data of its neighbors and its own. By combining the advantages of both, our method can obtain higher detection rate in low signal-to-noise ratio environment than the scan statistics. After the local vote decision, the distribution of sensors which have detected the target becomes more intensive. To make full use of local vote decision, we introduce a variable-step-parameter for the SSLV. It significantly shortens the scan period especially when the target is absent. Analysis and simulations are presented to demonstrate the performance of our method.