The presence of aquaporins in the cardiovascular system has been well documented, however our knowledge about their role in myocardial pathophysiology is now being elucidated. A brief overview of the presence, function and regulation of aquaporins in myocardial injury is here presented.
On the Role of Aquaporins in Myocardial InjuryMarcelo Ozu*
Editorial TextCardiopulmonary bypass (CPB) renders the myocardium susceptible to water imbalance and subsequent Myocardial edema (ME) as a consequence of decreased cardiac energy supply [1]. Factors leading to ME include hemodilution, ischemia and reperfusion, as well as osmotic gradients arising from pathological changes of the physiological state.Several members of the aquaporin (AQP) family have been described in the myocardium [2]. The mRNA expression of AQP -1, -3, -5, -7, -9, -10, and -11 was detected in human hearts, while AQP -1, -4, -6, -7, -8, and -11 were detected in hearts from mice and rats [3]. The protein expression of AQP6 was detected inside the myocytes in mice, while AQP4 was exclusively observed on the intercalated discs between cardiac myocytes [4].Experiments with AQP1 knock-out mice showed microcardia, decreased myocyte dimensions and low blood pressure [5]. On the other hand, knock-out mice for AQP7 showed a conserved cardiac morphology, although low content of glycerol and ATP was observed [6].Nowadays, research is focused on the role that aquaporins play in myocardial injury. AQP -1, -4, and -6 seems to play different roles in myocardial infarction (MI) in mouse hearts. While the time dependent pattern of the observed up-regulated expression of AQP4 in MI coincides with that of ME and cardiac dysfunction, the expression of AQP1 and AQP6 persistently increase [4].One of the first reports of aquaporins in heart revealed that AQP1 colocalizes with Caveolin-3 at 20°C and 37°C in rats [7]. Interestingly, when rat cardiac myocytes were exposed to hypertonic media AQP1 was reversibly internalized [7]. In addition, a more recent report showed that AQP1 cosegragates with Caveolin-1 in mice [5]. Recent works demonstrated that the levels of AQP1 mRNA and protein increase 12 hours after global myocardial ischemia in goats following CPB [8]. Moreover, the treatment with HgCl2 reduced ME, indicating that AQP1 is involved in the development of edema [8]. Other works showed that AQP1 expression is inversely correlated with the protein expression of Connexin 43 in goats following CPB [9]. Altogether, these evidences suggest an important role of AQP1 in the regulation of Connexin 43 in the progression of ME, and a related localization of AQP1 and Caveolin-1.In mouse hearts AQP1 was shown to be localized at caveolae but also in endothelial cell membranes. Cardioplegia, ischemia and hypoxia decrease AQP1 mRNA as well as total protein expression and glycosylation [10]. In endothelium, AQP1 does not regulate the endothelium-derived hyperpolarizing factor (EDH (F)) or NOdependent relaxation, but its deletion increases prostanoids-dependent relaxation in resist...