SIGGRAPH Asia 2019 XR 2019
DOI: 10.1145/3355355.3361890
|View full text |Cite
|
Sign up to set email alerts
|

AR-ia: Volumetric Opera for Mobile Augmented Reality

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
52
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
3

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(52 citation statements)
references
References 10 publications
0
52
0
Order By: Relevance
“…Synthesizing realistic relightable humans it is often tackled using image-based relighting techniques [Debevec et al 2000;Einarsson et al 2006;Wenger et al 2005b], or Parametric models with priors [Barron and Malik 2015;Blanz and Vetter 1999;Garrido et al 2013Garrido et al , 2016Gotardo et al 2018;Ichim et al 2015;Meka et al 2017;Pons-Moll et al 2015;Theobalt et al 2007;Thies et al 2016; Wen et al Table 1. Machine learning methods achieve a high degree of photorealism, whereas traditional capture pipelines [Guo et al 2019] are better at generalization, rendering capabilities, and they can capture moving performers. Our algorithm brings together the capabilities of both state-of-the-art approaches.…”
Section: Related Workmentioning
confidence: 99%
See 4 more Smart Citations
“…Synthesizing realistic relightable humans it is often tackled using image-based relighting techniques [Debevec et al 2000;Einarsson et al 2006;Wenger et al 2005b], or Parametric models with priors [Barron and Malik 2015;Blanz and Vetter 1999;Garrido et al 2013Garrido et al , 2016Gotardo et al 2018;Ichim et al 2015;Meka et al 2017;Pons-Moll et al 2015;Theobalt et al 2007;Thies et al 2016; Wen et al Table 1. Machine learning methods achieve a high degree of photorealism, whereas traditional capture pipelines [Guo et al 2019] are better at generalization, rendering capabilities, and they can capture moving performers. Our algorithm brings together the capabilities of both state-of-the-art approaches.…”
Section: Related Workmentioning
confidence: 99%
“…Relightable Moving Performers Higher-order Appearance Model Generalization Guo et al [2019] Yes Yes Yes No Yes Thies et al [2019] Yes No No Yes No Martin-Brualla et al [2018] Yes No Yes Yes Yes Wenger et al [2005a] No Yes Yes (with high FPS) Yes Yes Meka et al [2019] No Yes Yes Yes Yes Yes (half hemisphere) No…”
Section: Free Viewpointmentioning
confidence: 99%
See 3 more Smart Citations