Background
Ovarian Carcinoma (OCa) is a high-mortality malignancy derived from female reproductive system. Increasing evidence has identified long non-coding RNAs (lncRNAs) as important regulators in OCa chemoresistance. In this study, we intended to explore the role of LINC01503 in OCa resistance to carboplatin (CBP).
Methods
Gene expression was measured by reverse transcription-quantitative PCR (RT-qPCR) in OCa cells. Western blot was adopted to detect protein levels of GATA1, PD-L1, E-cadherin, N-cadherin, Vimentin, Bcl-2, Bax, cleaved caspase-3. To assess the effects of LINC01503 on the resistance of OCa cells to CBP, Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and flow cytometry experiments were performed to evaluate half-maximal inhibitory concentration (IC50), cell viability, migrative and invasive ability, as well as cell apoptosis. Dual-luciferase reporter assay was employed to assess the associations between the genes.
Results
LINC01503 was upregulated in CBP-resistant OCa cells. LINC01503 knockdown reduced CBP resistance in OCa cells. Besides, GATA-binding protein 1 (GATA1) activated LINC01503 transcription in CBP-resistant OCa cells. MiR-766-5p was lowly expressed in CBP-resistant cells and confirmed as a target for LINC01503. In addition, miR-766-5p overexpression increased CBP sensitivity in OCa cells. PD-L1 was verified as the target of miR-766-5p. Besides, LINC01503 upregulated PD-L1 level by regulating miR-766-5p. Furthermore, rescue experiments showed that PD-L1 overexpression abrogated the inhibited impacts of blocking LINC01503 on CBP resistance in OCa cells.
Conclusion
GATA1-induced LINC01503 expedited CBP resistance in OCa cells via the miR-766-5p/PD-L1 axis, providing a new target for improving the efficacy of OCa chemotherapy.
Graphical Abstract