Abstract:Topic modeling algorithms can better understand data by extracting meaningful words from text collection, but the results are often inconsistent, and consequently difficult to interpret. Enrich the model with more contextual knowledge can improve coherence. Recently, neural topic models have emerged, and the development of neural models, in general, was pushed by BERT-based representations. We propose in this paper, a model named AraBERTopic to extract news from Facebook pages. Our model combines the Pre-train… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.