Protein‐protein interactions play a crucial role in driving cellular processes and enabling appropriate physiological responses in organisms. The plant hormone ethylene signaling pathway is complex and regulated by the spatiotemporal regulation of its signaling molecules. Constitutive Triple Response 1 (CTR1), a key negative regulator of the pathway, regulates the function of Ethylene‐Insensitive 2 (EIN2), a positive regulator of ethylene signaling, at the endoplasmic reticulum (ER) through phosphorylation. Our recent study revealed that CTR1 can also translocate from the ER to the nucleus in response to ethylene and positively regulate ethylene responses by stabilizing EIN3. To gain further insights into the role of CTR1 in plants, we used TurboID‐based proximity labeling and mass spectrometry to identify the proximal proteomes of CTR1 in Nicotiana benthamiana. The identified proximal proteins include known ethylene signaling components, as well as proteins involved in diverse cellular processes such as mitochondrial respiration, mRNA metabolism, and organelle biogenesis. Our study demonstrates the feasibility of proximity labeling using the N. benthamiana transient expression system and identifies the potential interactors of CTR1 in vivo, uncovering the potential roles of CTR1 in a wide range of cellular processes.