This paper deals with the issue of sentiment analysis on dialectal comments extracted from social media. These comments concern the Algerian spoken language, written in Arabic and/or Latin characters, which could be either Modern Standard Arabic, French or local dialect. This complexity gives rise to a large number of text processing issues. The contributions of this work are fourfold. First, the building of the Algerian dialect sentiment dataset of 11760 comments collected from diverse social media platforms. Second, the creation of the Skip-Gram and CBOW models by word2vec from a corpus containing 466424 comments, these latter are used to enhance the sentiment dataset by semantically similar words. Third, the proposal of a set of preprocessing steps adapted to deal with dialectal texts. Finally, implementation and testing of different machine learning classifiers (SVM, Naive Bayes via its three variants (Bernoulli NB, Gaussian NB and Multinomial NB)) and two deep learning architectures (CNN, RNN) to evaluate and compare the dataset in original version, in a transcribed to Latin character version and then in a semantically-enhanced version by word2vec models. Experiments reach performances of sentiment classifiers applied on "dataset transcribed to Latin characters" of accuracies = (MNB:84.21%, CNN:64.11%) and on "transcribed dataset and enhanced by word2vec models" of accuracies = (SVM:83.70%, RNN:65.21%). Povzetek: Ta članek obravnava vprašanje analize sentimenta komentarjev alžirskega narečja, napisanih v arabščini in / ali latinici, pridobljenih iz družbenih medijev. Izvedbo izvajajo različne klasifikatorje strojnega učenja (SVM, Naive Bayes skozi njegove tri različice (Bernoulli, Gaussian in Multinomial)) in dve arhitekturi globokega učenja (CNN, RNN) za ovrednotenje in primerjavo nabora podatkov v prvotni različici, v različici, ki je prepisana v latinščini nato v semantično izboljšani različici modelov word2vec.