We experimentally demonstrate composite stimulated Raman adiabatic passage (CSTIRAP), which combines the concepts of composite pulse sequences and adiabatic passage. The technique is applied for population transfer in a rare-earth doped solid. We compare the performance of CSTIRAP with conventional single and repeated STIRAP, either in the resonant or the highly detuned regime. In the latter case, CSTIRAP improves the peak transfer efficiency and robustness, boosting the transfer efficiency substantially compared to repeated STIRAP. We also propose and demonstrate a universal version of CSTIRAP, which shows improved performance compared to the originally proposed composite version. Our findings pave the way towards new STIRAP applications, which require repeated excitation cycles, e.g., for momentum transfer in atom optics, or dynamical decoupling to invert arbitrary superposition states in quantum memories. arXiv:1811.05719v1 [quant-ph]