This study presents first a relatively lesser studied topic of the role played by surface-parallel restraints in determining the response of simply supported thick to thin doubly curved cross-ply panels of rectangular plan-form, modeled using a third order shear deformation theory, quantified by way of the difference between full and absent surface-parallel edge restraints. Mathematically speaking, this corresponds to the difference between complementary solutions to mixed boundary-value problems, resulting from two extreme sets of surface-parallel restraints. Of special interest is the threeway interaction of the membrane action due to curvature with the surface-parallel boundary constraint as well as the higher-order (resp. first-order) bending-stretching coupling producing beam-column/tie-bar type softening/hardening effects in thick (respectively thin) asymmetric cross-ply panels. Comparison with other popular shear deformation theories, such as the layer-wise constant shear-angle theory or zig-zag theory and first order shear deformation theory, also constitutes an important focus of this investigation. Results for cross-ply plates are regenerated in order to show the severity of the effect of curvature, especially in the thin shell regime.