MicroRNAs (miRNAs) are modulators of gene expression that play key regulatory roles in distinct cellular processes. Methamphetamine (METH) induces various aberrant changes in the limbic system by affecting a complex gene regulatory mechanism, yet the involvement of miRNAs in the effects of METH exposure remains unclear. This study identifies METH-responsive miRNAs and their potential effects in the nucleus accumbens (NAc) of mice. Using miRNA sequencing, we examined the expression of miRNAs in the NAc of saline- and METH-treated mice and identified 45 known miRNAs to be METH responsive. Additionally, we identified two novel miRNA candidates that were METH responsive (novel-m002C and novel-m009C). Our target prediction analysis suggested that the known METH-regulated miRNAs might target genes that are involved in cellular autophagy, cellular metabolism, and immune responses and that the novel METH-regulated miRNA candidates might target genes that are related to drug addiction. We also matched the predicted targets of METH-regulated miRNAs with the NAc messenger RNA expression profile, revealing eight putative METH-regulated target genes (Arc, Capn9, Gbp5, Lefty1, Patl2, Pde4c, Strc, and Vmn1r58). Thus, METH triggers an alteration in NAc miRNA expression, which could contribute to METH-induced changes in neuron autophagy, metabolism, and immune responses. The differential expression of putative target genes suggests their involvement following exposure to METH.